Amorphization and Dynamic Recovery of A2BO4 Structure Types During 1.5 MeV Krypton Ion-Beam Irradiation

Author:

Wang L.M.,Gong W.L.,Ewing R.C.

Abstract

ABSTRACTThe temperature dependence of the critical amorphization dose, Dc of four A2BO4 compositions, forsterite (Mg2SiO4), fayalite (Fe2SiO4), synthetic Mg2GeO4, and phenakite (Be2SiO4) was investigated by in situ TEM during 1.5 MeV Kr+ ion beam irradiation at temperatures between 15 to 700 K. For the Mg- and Fe-compositions, the A-site is in octahedral coordination, and the structure is a derivative hcp (Pbnm); for the Be-composition, the A- and B-sites are in tetrahedral coordination, forming corner-sharing hexagonal rings (R3). Although the Dc's were quite close at 15 K for all the four compositions (0.2–0.5 dpa), Dc increased with increasing irradiation temperature at different rates. The Dc-temperature curve is the result of competition between amorphization and dynamic recovery processes. The Dc rate of increase (highest to lowest) is: Be2SiO4, Mg2SiO4, Mg2GeO4, Fe2SiO4. At room temperature, Be2SiO4 amorphized at 1.55 dpa; Fe2SiO4, at only 0.22 dpa. Based on the Dc-temperature curves, the activation energy, Ea, of the dynamic recovery process and the critical temperature, Tc, above which complete amorphization does not occur are: 0.029, 0.047, 0.055 and 0.079 eV and 390, 550, 650 and 995 K for Be2SiO4, Mg2SiO4, Mg2GeO4 and Fe2SiO4, respectively. These results are explained in terms of the materials properties (e.g., bonding and thermodynamic stability) and cascade size which is a function of the density of the phases. Finally, we note the importance of increased amorphization cross-section, as a function of temperature (e.g., the low rate of increase of Dc with temperature for Fe2SiO4).

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3