Author:
Kobayashi N.,Hasegawa M.,Hayashi N.,Katsumata H.,Makita Y.,Shibata H.,Uekusa S.
Abstract
AbstractSynthesis of metastable group-IV binary alloy semiconductor thin films on Si was achieved by the crystalline growth of Si1-xSnx layers using Sn ion implantation into Si(100) followed either by ion-beam-induced epitaxial crystallization (IBIEC) or solid phase epitaxial growth (SPEG). Si(100) wafers were implanted at room temperature with 110keV 120Sn ions to a dose of 1×1016 cm-2 (x=0.029 at peak concentration) and 2x1016 cm-2 (x=0.058 at peak concentration). By this process about 90nm-thick amorphous Si1-xSnx and about 30nm-thick deeper amorphous Si layers were formed. IBIEC experiments performed with 400keV Ar ions at 300–400°C have induced an epitaxial crystallization of the amorphous alloy layers up to the surface and lattice site occupation of Sn atoms for samples with the lower Sn concentration (LC). XRD analyses have revealed a partial strain compensation for the crystallized layer. Samples with the higher Sn concentration (HC) have shown an epitaxial crystallization accompanied by defects around the peak Sn concentration. SPEG experiments up to 750°C for LC samples have shown an epitaxial crystallization of the fully strained alloy layer, whereas those for HC samples up to 750°C have revealed a collapse of the epitaxial growth around the interface of the alloy layer and the Si substrate. Photoluminescence (PL) emission from both IBIEC-grown and SPEG-grown samples with the lower Sn concentration has shown similar peaks to those by ion-implanted and annealed Si samples with intense I1 or I1-related (Ar) peaks. Present results suggest that IBIEC has a feature for the non-thermal equilibrium fabrication of Si-Sn alloy semiconductors.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献