The Effect of Deposition Method on Growth Morphology - Comparison of Molecular Beam Epitaxy, Ion Beam Assisted Deposition and Sputter Deposition

Author:

Michely Th.,Kalff M.,Comsa G.

Abstract

AbstractThin films created by the deposition or under influence of atoms with hyperthermal energies (E = 100 -104eV) exhibit properties which differ in many respects from those of films created by deposition of atoms with thermal energy. The morphologies of thin Pt-films deposited on Pt(111) under otherwise identical deposition conditions by molecular beam epitaxy (MBE), ion beam assisted deposition (IBAD) and sputter deposition (SD) differ in film structure size, island shapes and film roughness. The different film structure sizes are unambiguously traced back to two different island formation mechanisms inherent to these deposition methods. While in MBE the islands result from nucleation in a supersaturated adatom gas, in IBAD and SD they result by direct or indirect creation of adatom clusters as a consequence of single impacts of energetic atoms present in the depositing particle flux. The differences in film roughness are not only due to the different island formation mechanisms, but seem to be closely related to the different step edge structures at the growth front.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3