Theory of the Sulphur-Passivated InP(001) Surface

Author:

Lewis Laurent J.,Dharma-Wardana Chandré

Abstract

ABSTRACTWe present a detailed and comprenhensive theoretical investigation of the sulphur-passivated (001) surface of InP. First, the ground-state structure is determined using density-functional methods, including full relaxation of the surface. The lowest-energy structure at 0 K is a striking (2 × 2) reconstruction with the S atoms displaced from the bridge sites to form short and long dimers, belonging to two distinct sublayers. This surface structure is used to calculate the backscattering Raman spectrum; the two peaks arising from surface-layer vibrations predicted by our calculations are observed. Next, our first-principles calculations are extended to the study of a number of other stable states of the surface that can arise upon annealing. For this purpose, we construct and relax several higher-energy states of the surface, and calculate the corresponding core-level photoemission spectra. A remarkable sequence of structures is found to unfold from the fully S-covered ground state as they become energetically accessible. The surface S atoms exchange with bulk P atoms, forming new (and strong) S-P bonds while dissociating pre-existing S–S dimers. The predicted core-level spectra are found to be entirely consistent with the experimental measurements; our calculations indicate that the annealed (at about 700 K) surface is a (2 × 2) structure containing two S and two P atoms per unit cell. Finally, we have used the predicted stable surface structures to calculate the photoemission and inverse photoemission spectra. They are found to agree well with experiment if the surface is assumed to consist of a mixture of the above ground-state and annealed structures.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3