Damage and Dopant Profiles Produced by Ultra-Shallow Boron And Arsenic Ion Implants into Silicon at Different Temperatures Characterised by Medium Energy Ion Scattering.

Author:

van den Berg J. A.,Armour D. G.,Zhang S.,Whelan S.,Werner M.,Collart E. H. J.,Goldberg R. D.,Bailey P.,Noakes T. C. Q.

Abstract

AbstractMedium energy ion scattering (MEIS), operated at sub-nm depth resolution in the double alignment configuration, has been used to examine implant and damage depth profiles formed in Si(100) substrates irradiated with 2.5 keV As+ and 1 keV B+ ions. Samples were implanted at temperatures varying between 150°C, and 300°C to doses ranging from 3X1014 to 2X1016 cm-2. For the As implants the MEIS studies demonstrate the occurrence of effects such as a dopant accommodation linked to the growth in depth of the damage layer, dopant clustering, as well as damage and dopant movement upon annealing. Following epitaxial regrowth at 600°C, approximately half of the As was observed to be in substitutional sites, consistent with the reported formation of AsnV complexes (n≤4), while the remainder became segregated and became trapped within a narrow, 1.1 nm wide layer at the Si/oxide interfaceMEIS measurements of the B implants indicate the formation of two distinct damage regions each with a different dependence on implant dose, the importance of dynamic annealing for implants at room temperature and above, and a competing point defect trapping effect at the Si/oxide interface. B+ implantation at low temperature resulted in the formation of an amorphous layer due to the drastic reduction of dynamic annealing processes.Notably different dopant distributions were measured by SIMS in the samples implanted with As at different temperatures following rapid thermal annealing (RTA) up to 1100°C in an oxidising environment. Implant temperature dependent interactions between defects and dopants are reflected in the transient enhanced diffusion (TED) behaviour of As.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3