Author:
Kamiya Shoji,Shimomura Hiroshi,Omiya Masaki,Suzuki Takashi
Abstract
We developed a new microscale technique for evaluating the local interface adhesion in a thin film stack and we compared it with a conventional four-point bending technique. Using the microscale technique, the interface adhesion was estimated to be 3.0 J/m2 by comparing experimental results with numerical simulation results for interface crack propagation behavior. The four-point bending technique was applied to the same interface and the interface adhesion was estimated to be 4.4 J/m2 by experiment. However, this value is an overestimate because it includes the plastic deformation of epoxy resin used to fabricate the specimens. By eliminating the additional energy dissipated through plastic deformation of the epoxy resin close to the interface crack tip, the interface adhesion was evaluated to be 3.3 J/m2. This value agrees well with that obtained using the microscale technique.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献