Abstract
AbstractThe advances in integrated circuit technology has made failure site localization extremely challenging. Charge-Induced Voltage Alteration (CIVA), Low Energy CIVA (LECIVA), Light-Induced Voltage Alteration (LIVA), Seebeck Effect Imaging (SEI) and Thermally-Induced Voltage Alteration (TIVA) are five recently developed failure analysis techniques which meet the challenge by rapidly and non-destructively localizing interconnection defects on ICs. The techniques take advantage of voltage fluctuations in a constant current power supply as an electron or photon beam is scanned across an IC. CIVA and LECIVA are scanning electron microscopy (SEM) techniques that yield rapid localization of open interconnections. LIVA is a scanning optical microscopy (SOM) method that yields quick identification of damaged semiconductor junctions and determines transistor logic states. SEI and TIVA are SOM techniques that rapidly localize open interconnections and shorts respectively. LIVA, SEI, and TIVA can be performed from the backside of ICs by using the proper photon wavelength. CIVA, LECIVA, LIVA, TIVA, and SEI techniques in terms of the physics of signal generation, data acquisition system required, and imaging results displaying the utility of each technique for localizing interconnection defects. In addition to the techniques listed above, the Resistive Contrast Imaging (RCI) for localizing opens on metal test patterns will be described as a starting point for the “IVA” technologies.
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. 17. Nikawa K. and Inoue S. . ISTFA (1996) 387–392.
2. 15. Koyama T. , Mashiko Y. , Sekine M. , Koyama H. , and Horie K. . IRPS. (1995) 228–233.
3. 8. Cole E.I. Jr et al., Proc. Int. Symp. Testing and Failure Anal., (1994) 23.
4. 2. Cole E.I. Jr and Anderson R.E. , IRPS. (1992) 288–298.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献