Abstract
A finite element analysis was used to determine how patterned, nanoscale interfacial roughness could potentially increase the apparent interfacial toughness of brittle, thin-film material systems. The pattern analyzed was composed of parallel channels with either a rectangular-toothed or a rippled cross-section. Results are presented for a thin, linear elastic, bimaterial strip loaded by displacing the top edge relative to the bottom edge. The finite element calculations indicate that the interface does not unzip in a steady, continuous manner. Instead, the crack tip stalls as it tries to kink in a direction that is offset from its original path. The apparent interfacial toughness is found to depend on the intrinsic interfacial toughness, the ratio of real-to-nominal interfacial area, the extent of ligament, tooth-tip damage that occurs before crack propagation, strain energy locked in by persistent contact, and the level of energy dissipation associated with dynamic fracture.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献