Author:
Nadgorny Edward M.,Dimiduk Dennis M.,Uchic Michael D.
Abstract
This study examines the size-dependent deformation response of pure LiF single crystals using microcompression testing. Microcrystals with an 〈001〉 orientation and sample diameter D ranging from 1 to 20 μm were fabricated by focused ion beam (FIB)-milling from bulk crystals having a low initial dislocation density. Both as-grown and γ-irradiated crystals were examined to characterize the effect of an increased point defect density on the size-affected plastic flow response. Similar to previously studied face-centered cubic (FCC)-derivative metals, both types of LiF microcrystals exhibit typical size-dependent plastic flow behavior: a dramatic size-dependent and statistically varying flow stress, atypically high strain hardening rates at small plastic strains, and fast intermittent strain bursts. The size-dependent strengthening obeys a power law, σ ∼ D−m, where m ≈ 0.8, and this rapid hardening results in engineering flow stresses of 650 MPa in 1-μm samples. The findings are evaluated against possible dislocation mechanisms that could be responsible for the observed size effects.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献