Author:
Wong-Ng W.,Levin I.,Ritter J.,Cook L.P.,Liu G.,Otani M.,Vaudin M.,Lucas C.,Diwanji S.P.,Feenstra R.
Abstract
Phases that are in equilibrium with BaR2CuO6+x (R=lanthanides and Y), such as the “green-phase” and “brown-phase” structural variants of BaR2CuO5 in bulk samples, are attractive choices for flux-pinning for coated conductor applications because of the guaranteed chemical stability. In films, high-temperature x-ray diffraction studies of Ba2RCu3O6+x superconductor deposited on SrTiO3 substrate using the trifluoroacetate solution method demonstrate that while BaNd2CuO5 (“brown-phase” structure) develops at 735 °C and 100 Pa pO2, neither BaGd2CuO5 nor Ba(Nd1/3Eu1/3Gd1/3)2CuO5 (both green-phase structure) form at these conditions. As a result, Ba2(Nd1/3Eu1/3Gd1/3)Cu3O6+x in thin films is in equilibrium with the brown-phase, and Ba2GdCu3O6+x is in equilibrium with Gd2O3 in the Ba–Gd–Cu–O system, in contrast to the bulk systems. Different phase relationships in the vicinity of the Ba2RCu3O6+x phase imply different phases are available for flux-pinning applications. These differences will need to be considered carefully in designing optimized superconducting coated conductors.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献