In situ Transmission Electron Microscopy Investigation of Radiation Effects

Author:

Birtcher R.C.,Kirk M.A.,Furuya K.,Lumpkin G.R.,Ruault M-O.

Abstract

In situ observation is of great value in the study of radiation damage utilizing electron or ion irradiation. We summarize the facilities and give examples of work found around the world. In situ observations of irradiation behavior have fallen into two broad classes. One class consists of long-term irradiation, with observations of microstructural evolution as a function of the radiation dose in which the advantage of in situ observation has been the maintenance of specimen position, orientation, and temperature. A second class has involved the recording of individual damage events in situations in which subsequent evolution would render the correct interpretation of ex situ observations impossible. In this review, examples of the first class of observation include ion-beam amorphization, damage accumulation, plastic flow, implant precipitation, precipitate evolution under irradiation, and damage recovery by thermal annealing. Examples of the second class of observation include single isolated ion impacts that produce defects in the form of dislocation loops, amorphous zones, or surface craters, and single ion impact-sputtering events. Experiments in both classes of observations attempt to reveal the kinetics underlying damage production, accumulation, and evolution.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-situ TEM bubble to cavity evolution due to annealing post helium and dual ion irradiation in Cu-10Ta and Cu-3Ta;Materials Characterization;2023-08

2. Design of a beam line for simultaneous dual-beam ion implantation;AIP Advances;2023-07-01

3. Future Vision;In‐Situ Transmission Electron Microscopy Experiments;2023-05-12

4. In‐SituTEM;In‐Situ Transmission Electron Microscopy Experiments;2023-05-12

5. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures;Nanomaterials;2023-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3