Competing Fracture Modes in Brittle Materials Subject to Concentrated Cyclic Loading in Liquid Environments: Monoliths

Author:

Zhang Yu,Bhowmick Sanjit,Lawn Brian R.

Abstract

The competition between fracture modes in monolithic brittle materials loaded in cyclic contact in aqueous environments with curved indenters is examined. Three main modes are identified: conventional outer cone cracks, which form outside the maximum contact; inner cone cracks, which form within the contact; and median–radial cracking, which form below the contact. Relations describing short-crack initiation and long-crack propagation stages as a function of number of cycles, based on slow crack growth within the Hertzian field, are presented. Superposed mechanical driving forces—hydraulic pumping in the case of inner cone cracks and quasiplasticity in the case of median–radials—are recognized as critically important modifying elements in the initial and intermediate crack growth. Ultimately, at large numbers of cycles, the cracks enter the far field and tend asymptotically to a simple, common relation for center-loaded pennylike configurations driven by slow crack growth. Crack growth data illustrating each mode are obtained for thick soda-lime glass plates indented with tungsten carbide spheres in cyclic loading in water, for a range of maximum contact loads and sphere radii. Generally in the glass, outer cone cracks form first but are subsequently outgrown in depth as cycling proceeds by inner cones and, especially, radial cracks. The latter two crack types are considered especially dangerous in biomechanical applications (dental crowns, hip replacements) where ceramic layers of finite thickness are used as load-bearing components. The roles of test variables (contact load, sphere radius) and material properties (hardness, modulus, toughness) in determining the relative importance of each fracture mode are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3