Cyclic fatigue of a mica-containing glass-ceramic at Hertzian contacts

Author:

Cai Hongda,Kalceff Stevens Marion A.,Hooks Bryan M.,Lawn Brian R.,Chyung Kenneth

Abstract

Fatigue damage in a mica-containing glass-ceramic is examined using Hertzian contact tests. For the material in its base glass state, such tests indicate that fatigue occurs solely by chemically enhanced cone crack extension. In the glass-ceramic, fatigue is evident as an expansion of a macroscopic subsurface microfracture zone. Comparative observations of the subsurface damage in static and cyclic loading, and tests in different environments, indicate that the fatigue in the glass-ceramic is mechanical in origin, although it is enhanced by moisture. This result is reinforced by load-point-displacement data, which reveal significant hysteresis in the glass-ceramic but not in the base glass. Flexure tests on Hertz-indented glass-ceramic specimens show only a slight loss of strength, <5%, over 105cycles. This contrasts with the base glass which, although of higher laboratory strength, is subject to abrupt and severe strength degradation from cone crack pop-in. High magnification examination of the subsurface damage in the glass-ceramic suggests the underlying cause of the mechanical fatigue mechanism to be attrition of frictional tractions at closed microcrack interfaces.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3