Oxidation of Ni-toughened nc-TiN/a-SiNx nanocomposite thin films

Author:

Zhang Sam,Sun Deen,Zeng Xianting

Abstract

Oxidation behavior of Ni-toughened reactively sputtered composite thin films of nanocrystalline TiN and amorphous SiNx [denoted as nc-TiN/a-SiNx(Ni)] was explored to understand the oxidation mechanism. The films were deposited on silicon substrate using a magnetron sputtering technique. Oxidation was carried out from 450 °C up to 1000 °C. The nature of the oxidation was determined using x-ray photoelectron spectroscopy. The microstructure of the oxidized films was studied using grazing incidence x-ray diffraction. The topography was characterized using atomic force microscopy. It was determined that the oxidation of the nc-TiN/a-SiNx(Ni) thin film proceeds primarily through a diffusion process, in which nickel atoms diffuse outward and oxygen ions inward. The oxidation takes place by progressive replacement of nitrogen with diffused oxygen. Five regions were identified in the oxidized layer from surface into the film. For films doped with 2.1 at.% Ni, a threshold temperature of 850 °C was determined, below which, excellent oxidation resistance prevails but above which, oxidation takes place at exponential rate, accompanied by abrupt increase of surface roughness.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3