Chemical vapor deposition synthesis and characterization of co-deposited silicon–nitrogen–boron materials

Author:

Essafti A.,Gómez-Aleixandre C.,Fierro J. L. G.,Fernández M.,Albella J. M.

Abstract

Si–N–B films have been deposited by LPCVD from SiH4/B2H6/NH3 gas mixtures. The influence of the temperature and the composition of the gas mixture on the deposition process and film properties has been investigated. At 1000 °C, for the highest ammonia flow rate (SiH4 :B2H6 : NH3, 10 : 25 : 500), a mixture of turbostratic boron nitride and silicon nitride was deposited. For decreasing ammonia flow rates the Si–N–B ternary system was formed (1260 cm−1 band in the infrared spectra), which co-exists with the unstable turbostratic boron nitride structure. Finally, for a low NH3 flow rate of 100 sccm, stable amorphous films are obtained. On the other hand, at 800 °C, stable films with a high content in the ternary Si–N–B compound were obtained for a wide range of ammonia concentrations (100–500 sccm). At this temperature (800 °C), the composition of the films, as measured by Auger and photoelectron spectroscopies, strongly depends on the [SiH4]/[B2H6] ratio in the gas mixture. The improvement in the mechanical and chemical properties of the samples has been associated with the increase in the content of Si–N bonds in the Si–N–B films.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3