Thin Film Heater on a Thermally Isolated Microstructure

Author:

Oh Seajin,Chu William,Cahill Sean

Abstract

ABSTRACTA microheater was fabricated on a thermally isolated silicon (Si) membrane and its electrical and thermomechanical properties were assessed. The sensor design was adjusted for good thermal isolation and good resistance to thermal shock. The heater was a platinum (Pt) thin-film meandering filament deposited with electron beam evaporation and patterned with lift-off methods. In order to operate the heater at high temperatures with minimum loss of Pt by evaporation, the heater was encapsulated with a ceramic film. During the heater operation, most of the heat was dissipated via conduction through the Si membrane which supported the multi-layered heater. When the Si membrane was completely etched away to suspend the heater, the power needed to heat the filament to strong incandescence (about 700–800°C) was 110 mW. Structural failure was not observed when the device was subjected to thermocycling up to approximately 500°C. The importance of the thermomechanical match of layers in a multi-layered heater structure, especially for use at high temperatures, is addressed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3