Surface and Interface Characterization of Ion Beam Re-crystallized Si

Author:

Sahoo P. K.,Satpati B.,Dey S.,Satyam P. V.,Som T.,Kulkarni V. N.

Abstract

ABSTRACTIn the present work we have studied efficacy of ion beam induced epitaxial crystallization (IBIEC) to recover amorphous layers (300 – 350 nm) produced by MeV Kr ions in Si(100) and studied the associated changes occurring on surface and interface of the recrystallized region. IBIEC experiments were carried out at sample temperatures in the range of 200 − 400°C using 1 MeV N+ ion beam. Rutherford backscattering-Channeling technique showed planar and gradual recovery of the amorphous layer as a function of temperature. Transmission electron microscopy measurements show good crystalline structure of the recovered region at 400°C while at lower temperatures nano-crystalline Si formation embedded in the amorphous structure is evident. The surface topography studied by atomic force microscopy shows development of islands after IBIEC. The rms roughness is around 0.5 nm and average height of the islands is found to be 1.8 nm. The observed epitaxial growth and the surface topographical features have been correlated.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference15 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructure of N+ ion beam induced epitaxial crystallized Si;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2004-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3