Author:
Turner G.W.,Manfra M.J.,Choi H.K.,Goyal A.K.,Buchter S.C.,Calawa S.D.,Sanchez A.,Spears D.L.
Abstract
AbstractMid-infrared optically pumped semiconductor lasers (OPSLs) are presently being investigated for a variety of commercial and military applications. Active regions in such optically pumped lasers must meet the dual requirements of high gain and low loss at mid-IR wavelengths, combined with sufficient absorption of the optical pump at shorter wavelengths for efficient power conversion. In this paper we report the successful growth, fabrication, and characterization of high-performance OPSLs that employ novel active regions consisting of combinations of GalnAsSb integrated-absorber layers with type-II GaInSb/InAs quantum well regions. With 1.85-µm optical pumping at 85 K, OPSLs with such active regions have exhibited a peak output power of 2.1 W at 3.9 pm, improved beam quality, power conversion efficiency of ∼8%, and characteristic temperatures of ∼47 K.
Publisher
Springer Science and Business Media LLC