Improved uniformity and selected area deposition of diamond by the oxy-acetylene flame method

Author:

von Windheim Jesko A.,Glass Jeffrey T.

Abstract

The role of SiO2 in nucleation of diamond has been investigated in an oxy-acetylene flame. It was found that growth methods that minimize SiO2 formation enhance diamond nucleation. A short pretreatment of a scratched Si surface in a low oxygen-to-acetylene ratio flame, at a distance 1.5 cm from the flame core, significantly improved uniformity of subsequent diamond growth. When scratched surfaces were intentionally oxidized, nucleation of diamond was completely inhibited. By using a mask to controllably deposit SiO2 on a scratched Si surface, highly selective deposition of diamond was achieved with resolution below 5 μm. These results are discussed with reference to competing oxidation and carbon formation processes that take place during the nucleation of diamond. During the nucleation stage, carbon may be deposited on the scratched Si via a route in which the Si surface catalyzes carbon formation reactions that are otherwise kinetically unfavorable. The formation of an oxide layer, on the other hand, would act to passivate the surface, and thus inhibit carbon formation via a catalytic route. The decomposition of CO to C and CO2 is given as an example of a reaction that is favored at temperatures below 1000 K, but requires surface catalysis to proceed because it remains frozen out in the gas phase due to a very slow reaction rate.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3