Optimizing diamond growth for an atmospheric oxyacetylene torch

Author:

Zeatoun Lua'y A.,Morrison Philip W.

Abstract

Diamond growth conditions for an atmospheric combustion flame have been optimized using statistical experimental design. Films are grown on a molybdenum bolt for 40 min at a distance of 1 mm from the flame cone. The diamond films have been characterized using Raman spectroscopy, x-ray diffraction, and scanning electron microscope. The input process variables are varied over a range of conditions: total gas flow rate Q = 2–4 standard liter/min, substrate surface temperature Ts = 800–1000 °C, and flow ratio of O2/C2H2 = R = 0.93–0.99. The experimental response outputs are growth rate, full width half maximum (FWHM) of the diamond Raman peak, Raman diamond fraction (β) in the film, ratio of luminescence to diamond peak height (LR), and the relative intensity of the {220}, {311}, {400}, and {331} orientations. The film quality indices FWHM, β, and LR improve by increasing the gas ratio (R), by increasing substrate surface temperature (Ts), and lowering the growth rate by decreasing total gas flow rate. Diamond film shows a small amount texturing in {220} and {400} orientation at low R and Ts. At high R and low Ts crystals are oriented with the {111} direction normal to the substrate surface. Jet and boundary layer theory have been applied to understand the growth rate, the thickness profile, and the morphological instability of the diamond films. Surface Damkühler calculation shows that the deposition process is marginally controlled by mass transfer. Growth rate of an open flame is higher than for an enclosed flame, while the Raman quality measurements of the enclosed flame are more uniform than open flame over the range of the comparison.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3