The dissociative adsorption of hydrogen sulfide over nanophase titanium dioxide

Author:

Beck Donald D.,Siegel Richard W.

Abstract

A variety of TiO2 materials, including a nanophase TiO2 powder, were evaluated for their ability to dissociatively adsorb H2S in a H2 environment. A temperature programmed desorption technique was used to determine the rate of sulfide accumulation on the surface of the samples as a measurement of initial activity. The initial activity for the gas condensation-produced nanophase TiO2 with its rutile structure was found to be greater than that for other samples of TiO2 tested. When normalized for surface area, the initial specific activities of the rutile samples studied for the dissociative adsorption of H2S were similar in magnitude, but significantly higher than those of the anatase TiO2 samples investigated. Thus, the improvement in the activity is attributed mainly to the ability of the nanophase synthesis method to produce high surface area rutile TiO2. When evaluated using x-ray photoelectron spectroscopy, the nanophase TiO2 was found to be significantly deficient in oxygen. Annealing this material in oxygen decreased the number of anion vacancies and lowered the activity. Thus, we conclude that oxygen vacancies also contribute to the H2S dissociative adsorption activity.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3