Author:
Chou ChinHao,Phillips Jonathan
Abstract
Metallic iron and iron oxide particles were produced by injecting ferrocene into the afterglow region of a low pressure, low power, plasma generated using a microwave power source. This was done as part of an effort to explore the feasibility of using flow type microwave plasmas for the production of metal nanoparticles. It was found that two parameters had the largest impact on the particles: injection point and plasma composition. Analysis done using Mössbauer effect spectroscopy, transmission electron microscopy, and x-ray diffraction indicated that low yields of small particles (ca. 10 nm) resulted from injection into the afterglow region. Much higher yields of large particles (ca. 50 nm) formed if the ferrocene was injected through the coupler. In hydrogen plasmas the particles that were produced were metallic iron, whereas in oxygen and argon plasmas the particles were iron oxide. In all cases significant amounts of graphitic carbon formed around the metal particles.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献