Investigation of the afterpeaks in pulsed microwave argon plasma at atmospheric pressure

Author:

Jeong SeokyongORCID,Nam WoojinORCID,Shim Seungbo,Yun GunsuORCID

Abstract

Abstract We studied the energy transport process in pulsed microwave argon plasmas at atmospheric pressure, focusing on the optical emission burst during the pulse-off time called the afterpeak. Guided by experimental observations using nanosecond time resolution imaging and spectroscopic diagnostics, we developed a global simulation model considering time-varying reaction rate coefficients and non-thermal electron energy distribution. Experimental and simulation results show that the afterpeak can be maximized by choosing an appropriate pulse period. Our analysis of the generation and consumption of excited argon species reveals that the rapid drop in electron temperature during the inter-pulse time reduces the diffusive loss of ions and enhances the recombination reactions, which produce the afterpeak. We also reveal that the radiation trapping and high energy level argon must be considered to simulate the afterpeak in atmospheric conditions. The improved understanding of the afterpeak dynamics can be utilized to optimize the power coupling and/or generation of reactive species.

Funder

BK 21+ Progrem

Samsung Electronics Co., Ltd

National Research Foundation of Korea

Institute of Information & Communications Technology Planning & Evaluation

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3