Electron emission from deep traps in hydrogenated amorphous silicon and silicon-germanium: Meyer-Neldel behavior and ionization entropy

Author:

Long Qi,Dinca Steluta,Schiff Eric A.,Yan Baojie,Yang Jeff,Guha Subhendu

Abstract

ABSTRACTWe have measured electron drift in amorphous silicon-germanium nip photodiodes using the photocarrier time-of-flight technique. The samples show electron deep-trapping shortly after photogeneration, which is generally attributed to capture by a neutral dangling bond (D0) to form a negatively charged center (D-). An unusual feature is that electron re-emission from the trap is also clearly seen in the transients. Temperature-dependent measurements on the emission yield an activation energy of about 0.8 eV and the remarkably large value of 1015 Hz for the emission prefactor frequency. We also compiled results on electron emission from deep traps in a-Si:H, a-SiGe:H, and a-SiC:H from six previous publications. Collectively, these measurements exhibit "Meyer Neldel" behavior for electron emission over a range of activation energies from 0.2–0.8 eV and a prefactor range extending over nine decades, from 106 to 1015 Hz. The Meyer-Neldel behavior is consistent with the predictions of the multi-excitation entropy model. We extract a ionization entropy of 20kB from the measurements, which is very large compared to crystal silicon. We discuss this result in terms of a bond charge model.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3