Deposition of Zinc Oxide Thin Films Using a Surface Reaction on Platinum Nanoparticles

Author:

Yasui Kanji,Miura Hitoshi,Nishiyama Hiroshi

Abstract

ABSTRACTA new chemical vapor deposition method for the growth of ZnO films using the reaction between dimethylzinc (DMZn) and thermally excited H2O produced by a Pt-catalyzed H2–O2 reaction was investigated. The thermally excited H2O molecules formed by the exothermic reaction of H2 and O2 on the catalyst were ejected from a fine nozzle into the reaction zone and allowed to collide with DMZn ejected from another fine nozzle. The ZnO films were grown directly on a-plane (11-20) sapphire substrates at substrate temperatures of 773-873 K with no buffer layer. X-ray diffraction patterns exhibited intense (0002) and (0004) peaks from the ZnO(0001) index plane. The smallest full width at half maximum (FWHM) value of the ω- rocking curve of ZnO(0002) was less than 0.1º. The largest Hall mobility and the smallest residual carrier concentration of the ZnO films were 169 cm2V−1s−1 and 1.7×1017 cm−3, respectively. Photoluminescence (PL) spectra at room temperature exhibited a band edge emission at 3.29 eV, with a FWHM of 104 meV. Green luminescence from deeper levels was generally about 1.5% of the band edge emission intensity. PL spectra at 5 K showed a strong emission peak at 3.3603 eV, attributed to the neutral donor-bound exciton Dºx. The FWHM was as low as 1.0 meV. Free exciton emissions also appeared at 3.3757 eV (FXA, n=1) and 3.4221 eV (FXA, n=2).

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3