Microcapsule-based materials for electrophoretic displays

Author:

Dai Runying,Wu Gang,Yin Peipei,Chen Hongzheng

Abstract

ABSTRACTElectrophoretic displays, the rewritable non-light-emitting display technology based on the movement of colored pigments inside a low dielectric liquid as a voltage is applied, have attracted a great deal of academic and commercial interests due to the combination of the advantages of both electronic displays and conventional paper, including paper-like high contrast appearance, ultra-low power consumption, thinness, flexibility etc. Fabrication of electrophoretic ink by microencapsulating the electrophoretic suspension into individual microcapsules is one way to realize such application. However, there are still some limitations for its commercial application, such as the dispersion and the electrophoretic mobility of charged particles due to the nano-particles aggregation, the barrier property and stability of microcapsule wall due to the suspension releasing, etc. In this presentation, systematic studies on the preparation of electrophoretic particles and microencapsulation by complex coacervation method were carried out to solve the mentioned problems. The obtained microcapsules can be quasi-monolayer coated on ITO/PET substrate and driven by static mode to obtain a matrix character display prototype.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3