Abstract
ABSTRACTWe review our work on irradiation effects in single crystal YBa2Cu3O7-x. Transmission electron microscopy has been employed to study the defect microstructures produced by irradiations with fast neutrons, MeV ions (Kr, Ne and p), and electrons. The atomic structure within defect cascades was investigated using 50 keV Kr and Xe ion irradiations to low doses. Evidence is shown for an amorphous structure with some incoherent recrystallization within individual cascades. Correlation with enhancements in critical current density produced by neutron irradiations suggest that this cascade structure effectively pins magnetic flux lines.At sufficiently high fluences of fast neutrons or MeV Kr and Ne ions, a cellular microstructure is found. This structure consists of cells or microcrystallites of good crystalline and superconducting material (in the case of neutron irradiation), with cell walls of amorphous material. Full amorphization proceeds with the growth of cell wall volume. The formation of this microstructure coincides with a decrease in criticaltransportcurrent, but is not observed by magnetization measurements.Increases in critical current density under proton irradiation, comparable to those produced by neutron irradiation, have been reported. The defect structure produced by proton irradiations is examined here and found to differ from that of neutron irradiations. The structure is suggested to be consistent with the clustering of mobile defects (at 300 K) produced by the lower energy recoils which dominate in proton irradiations. In both the proton and fast neutron irradiations, to fluences producing the maximum enhancements in critical current densities, the degradations in critical temperature are not severe, <10 K.Our most recent measurements of changes in critical temperature and current density, and defect microstructure following electron irradiations will be described
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. SPECOMP Calculations of Radiation Damage in Compounds
2. A Monte Carlo computer program for the transport of energetic ions in amorphous targets
3. Irradiation Effects in Superconducting Materials
4. 18. Kirk M. A. , Saxon G. and Marwick A. D. , to be published.
5. 14. Frischherz M. C. , Kirk M. A. , Liu J. Z. , Zhang J. P. and Weber H. W. , to be published in the Proceedings of the ASTM Symposium on “Effects of Radiation on Materials”, June 1990, Nashville, TN.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献