Author:
Gao Ying,Zhang Zehong,Bondokov Robert,Soloviev Stanislav,Sudarshan Tangali
Abstract
AbstractMolten KOH etchings were implemented to delineate structural defects in the n- and ptype 4H-SiC samples with different doping concentrations. It was observed that the etch preference is significantly influenced by both the doping concentrations and the conductivity types. The p-type Si-face 4H-SiC substrate has the most preferential etching property, while it is least for n+ samples. It has been clearly demonstrated that the molten KOH etching process involves both chemical and electrochemical processes, during which isotropic etching and preferential etching are competitive. The n+ 4H-SiC substrate was overcompensated via thermal diffusion of boron to p-type and followed by molten KOH etching. Three kinds of etch pits corresponding to threading screw, threading edge, and basal plane dislocations are distinguishably revealed. The same approach was also successfully employed in delineating structural defects in (0001) C-face SiC wafers.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献