Author:
Powell A.R.,Sumakeris J.J.,Leonard R.T.,Brady M.F.,Müller St.G.,Tsvetkov V.F.,Hobgood H.McD,Burk A.A.,Paisley M.J.,Glass R.C.,Carter C.H.
Abstract
AbstractThe performance enhancements offered by the next generation of SiC high power devices offer potential for enormous growth in SiC power device markets in the next few years. For this growth to occur, it is imperative that substrate and epitaxial material quality increases to meet the needs of the targeted applications. We will discuss the status and requirements for SiC substrates and epitaxial material for power devices such as Schottky and PiN diodes. For the SiC Schottky device where current production is approaching 50 amp devices, there are several material aspects that are key. These include; wafer diameter (3-inch and 100-mm), micropipe density (<0.3 cm−2 for 3-inch substrates and 16 cm−2 for 100-mm substrates), epitaxial defect densities (total electrically active defects <1.5 cm−2), epitaxial doping and epitaxial thickness uniformity. For the PiN diodes the major challenge is the degradation of the Vf characteristics due to the introduction of stacking faults during the device operation. We have demonstrated that the stacking faults are often generated from basal plane dislocations in the active region of the device. Additionally we have demonstrated that by reducing the basal plane dislocation density, stable PiN diodes can be produced. At present typical basal plane dislocation densities in our epitaxial layers are 100 to 500 cm−2; however, we have achieved basal plane dislocation densities as low as 4 cm−2 in epitaxial layers grown on 8° off-axis 4H-SiC substrates.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献