SrBi2Ta2O9 thin films made by liquid source metal-organic chemical vapor deposition

Author:

Zhu Yongfei,Desu Seshu B.,Li Tingkai,Ramanathan Sasangan,Nagata Masaya

Abstract

A liquid source metal-organic chemical vapor deposition system was installed to deposit SrBi2Ta2O9 (SBT) thin films on sapphire and Pt/Ti/SiO2/Si substrates. The process parameters such as deposition temperature and pressure, and ratio of Sr: Bi: Ta in the precursor solutions were optimized to achieve stoichiometric films with good reproducible ferroelectric properties. It was found that the nucleation of SBT started at a deposition temperature close to 500 °C and grain growth dominated at 700 °C and higher temperatures. With increasing deposition temperatures, the grain size of SBT thin films increased from 0.01 μm to 0.2 μm; however, the surface roughness and porosity of the films also increased. To fabricate specular SBT films, the films had to be deposited at lower temperature and annealed at higher temperature for grain growth. A two-step deposition process was developed which resulted in high quality films in terms of uniformity, surface morphology, and ferroelectric properties. The key to the success of this process was the homogeneous nucleation sites at lower deposition temperature during the first step and subsequent dense film growth at higher temperature. The two-step deposition process resulted in dense, homogeneous films with less surface roughness and improved ferroelectric properties. SBT thin films with a grain size of about 0.1 μm exhibited the following properties: thickness: 0.16–0.19 μm; 2Pr: 7.8–11.4 μC/cm2 at 5 V; Ec: 50–65 kV/cm; Ileakage: 8.0–9.5 × 10−9 Acm−2 at 150 kV/cm; dielectric constant: 100–200; and fatigue rate: 0.94–0.98 after 1010 cycles at 5 V.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference18 articles.

1. Direct liquid injection MOCVD of high quality PLZT films

2. 16. Dat R. , Lee J. K. , Basceri C. , Auciello O. , and Kingon A. , 7th Int. Symp. on Integrated Ferroelectrics, Colorado Springs, CO, March 20–22, 1995.

3. Novel fatigue-free layered structure ferroelectric thin films

4. 10. Paz de Araujo C. A. , Cuchiaro J. D. , Scott M. C. , and McMillan L. D. , International Patent Publication No. WO 93/12542 (24 June 1993).

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3