High pressure compaction of nanosize ceramic powders

Author:

Gallas M. R.,Rosa A. R.,Costa T. H.,Jornada J. A. H. da

Abstract

High-density ceramic materials from nanosize ceramic powders were produced by high pressure under nearly hydrostatic environment up to 5.6 GPa, on a special configuration in a toroidal-type apparatus, at room temperature. Attempts to use a common solid pressure transmitting medium, as NaCl, resulted in cracked samples. Lead and indium, which have an extremely low shear strength, proved to be the suitable choices as a pressure-transmitting medium to compact these ceramic materials, in order to obtain high-density samples. Transparent amorphous SiO2-gel and translucent γ−Al2O3 samples, in bulk, with volumes about 40 mm3, hard and crack-free were obtained. Densities over 90% of full density for the γ−Al2O3 samples and over 80% for the compacted SiO2-gel samples were obtained. In addition, from the density-pressure curve, the yield strength (σ) for γ−Al2O3 was estimated, for the first time, as 2.6 GPa. Vickers microhardness values were in the range of 5.7 GPa for the γ−Al2O3 samples, and 4.0 GPa for the SiO2-gel samples, under loads of 50 g. An important and practical application of these results is the possibility of producing bulk γ−Al2O3, a new alumina material, which was not possible to prepare before due to the conversion to a phase during the normal sintering process. Additionally, specially for SiO2-gel, a very important application of this study is the possibility of incorporation of organic substances in an inorganic matrix, using high pressure at room temperature.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3