Author:
Gleixner R. J.,Clemens B. M.,Nix W. D.
Abstract
Stress driven nucleation of voids in passivated aluminum interconnect lines is analyzed within the context of classical nucleation theory. A discussion of sources of tensile stress in such lines leads to an upper limit of 2 GPa. Calculations suggest that even at this high stress, nucleation rates are far too low to account for observed rates of voiding. Void formation at a circular defect at the line/passivation interface is then considered. In this case, a flaw on the order of nanometers in size may develop into a void under the imposed stress. These results strongly suggest that void nucleation in aluminum interconnect lines can be controlled by eliminating defects in the line/passivation interface.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献