Amorphous Silicon Image Sensor Arrays

Author:

Powell M J,French I D,Hughes J R,Bird N C,Davies O S,Glasse C,Curran J E

Abstract

ABSTRACTWe have developed a technology for 2D matrix-addressed image sensors using amorphous silicon photodiodes and thin film transistors. We have built a small prototype, having 192×192 pixels with a 20μm pixel pitch, and assessed its performance. The nip photodiodes can have dark current densities of less than 1011 A.cm-2 (up to 5V reverse bias) and peak quantum efficiencies of 88% (at 580nm). We operated the sensor in real time mode at high speed (50 Hz frame rate and 64μS line time). The image sensor has a low noise performance giving a dynamic range in excess of 104. The maximum crosstalk is about 2%, which allows at least 50 grey levels. The bottom contact of the photodiode acts as a light shield from light through the substrate, which enables the sensor to be operated as an intimate contact image sensor to image a document placed directly on top of the array. In this mode, the CTF was 75% at 2 lp.mm1. Good quality images are demonstrated in both front projection and intimate contact imaging modes.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3