Thermally induced hillock formation in Al–Cu films

Author:

Chang C. Y.,Vook R. W.

Abstract

Isothermal annealing studies of hillocks formed on Al–15 wt.% Cu films, vapor deposited at 25 °C on oxidized silicon wafers, were carried out in situ in a scanning electron microscope. The original hillocks formed as a result of substrate-induced thermal expansion strains which caused material to diffuse out of the film to form the hillocks when the films were heated to the isothermal annealing temperatures. During isothermal annealing the hillock density decreased and the average size of the hillocks increased. Measurements of these quantities as a function of time were made at a series of temperatures ranging from 200 to 300 °C. The activation energies for these two cases were found to be 0.29 and 0.28 eV, respectively. X-ray energy spectroscopy analysis of the films showed that the hillocks were richer in copper than the matrix. Transmission electron microscopy showed that the average hillock and grain sizes in the variously annealed films were linearly related and of the same order of magnitude. The results were also analyzed using Chakraverty's models for surface and interfacial diffusion. It was concluded that the evidence clearly shows that the observed processes could be well characterized by a typical Ostwald ripening model.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3