Short-period (Si14 / Si0.75 Ge0.25)20 Superlattices for the Growth of High-quality Si0.75 Ge0.25

Author:

Rahman M.M.,Tambo T.,Tatsuyama C.

Abstract

AbstractIn the present experiment, we have grown 2500-Å thick Si0.75Ge0.25 alloy layers on Si(001) substrate by MBE process using a short-period (Si14/Si0.75Ge0.25)20 superlattice (SL) as buffer layers. In the SL layers, first a layer of 14 monolayers (MLs) of Si (thickness about 20Å) then a thin layer of Si0.75Ge0.25 (thickness 5-6Å) were grown. This Si/(Si0.75Ge0.25) bilayers were repeated for 20 times. The buffer layers were grown at different temperatures from 300-400°C and the alloy layers were then grown at 500°C on the buffer layers. The alloy layer showed low residual strain (about -0.16%) and smooth surface (rms roughness ~15Å) with 300°C grown SL buffer. Low temperature growth of Si in SL layer introduces point defects and low temperature growth of Si1-xGex in SL layer reduces the Ge segregation length, which leads to strained SL layer formation. Strained layers are capable to make barrier for the propagation of threading dislocations and point defect sites can trap the dislocations.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3