Microstructural engineering through donor and acceptor doping in the grain and grain boundary of a polycrystalline semiconducting ceramic

Author:

Gupta Tapan K.

Abstract

This paper deals with the concept of microstructural engineering through donor and acceptor dopings within the grain and at the grain boundary of a polycrystalline semiconducting ceramic. These concepts are derived from an analysis of the “prebreakdown” and the “upturn” current-voltage characteristics of a ZnO varistor and from the construction of corresponding defect models as a function of donor and acceptor dopants at the grain and grain boundary. By using Li, Al, and Na as dopants, it is shown that the dopants can be grain or grain boundary specific in the ZnO microstructure and that they can act as donors, acceptors, or both, depending on the nature and concentration of dopants and their location on the host crystal lattice structure. In the case of the ZnO varistor, the grain and grain boundary properties can thus be tuned independently or concurrently by systematic engineering of the entire microstructure through defect dopings that are specific to the grain, grain boundary, or both. Following a detailed analysis of the defect models thus developed for the ZnO varistor, a set of ground rules are proposed for applying these concepts of donor and acceptor dopings at the grain and grain boundary to the general case of microstructural engineering in a polycrystalline semiconducting ceramic.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3