Analyses of defect distributions in ZnO varistors based on the Jonscher’s universal power law and the Dissado–Hill model

Author:

Zhao Xia,Guo MenORCID,Wen Yuandong,Shi Weidong,Zhang Boyu,Li Yupeng,Wen Ran

Abstract

Abstract The defect distributions in ZnO varistors mixed with Bi2O3, NiO, MnCO3, Co2O3, and SiO2 after doping Sb2O3 were investigated, based on the Jonscher’s universal power law and the Dissado–Hill model. The microstructures were investigated using x-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, and x-ray photoelectron spectrometer. The capacitance–voltage (CV) method was utilized to obtain the parameters of the double Schottky barrier. The dielectric spectra were analyzed to extract the parameters of defect distribution. The current density–electric field (JE) characteristics were measured to obtain the parameters of electrical properties. We found that with increasing Sb2O3 content, the ZnO grain size distribution become more homogeneous in the Sb2O3-doped ZnO varistors; the density Zn i × is decreased; except for less homogeneous V O × , more homogeneous distributions of Zn i in the depletion layers and the extrinsic defects at the interfaces are achieved in the Sb2O3-doped ZnO varistors. Therefore, the enhancement in the electrical properties was achieved by doping Sb2O3 due to the increased number of active grain boundaries per unit volume, i.e. the increased breakdown field and nonlinear coefficient, and the decreased leakage current density. The results of this study suggest that the Jonscher’s universal power law and the Dissado–Hill model can be effectively used to analyze defect distributions in varistor ceramics.

Funder

Science and Technology Project of State Grid Corporation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3