Author:
Istratov A. A.,Hieslmair H.,Weber E. R.
Abstract
Progress in silicon technology has been phenomenal since the invention of the transistor some 50 years ago. Device performance has improved by at least a factor of a million in every respect. As the minimum feature size on chips decreases toward 0.1 μm, which should be reached on a mass-production scale in a few years, the device yield is becoming ever more sensitive to defects and impurities. Transition metals, particularly iron, nickel, and copper, are the most common and most detrimental contaminants on a process line, and they can be unintentionally introduced in nearly every process step, including ingot growth, wafer handling, ion implantation, wet-chemical cleaning, high-temperature anneals, or oxidation. To avoid yield losses, the silicon industry has to be very strict with respect to metal-contamination levels on the production line. For instance, for iron, the Semiconductor Industry Association (SIA) Roadmap presently specifies 2.5 ϗ 1010 cm−2 as the maximum tolerable surface concentration, decreasing to 5 ϗ 109 cm−2 by 2004.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献