Advanced Gettering Techniques in ULSI Technology

Author:

Istratov A. A.,Hieslmair H.,Weber E. R.

Abstract

Progress in silicon technology has been phenomenal since the invention of the transistor some 50 years ago. Device performance has improved by at least a factor of a million in every respect. As the minimum feature size on chips decreases toward 0.1 μm, which should be reached on a mass-production scale in a few years, the device yield is becoming ever more sensitive to defects and impurities. Transition metals, particularly iron, nickel, and copper, are the most common and most detrimental contaminants on a process line, and they can be unintentionally introduced in nearly every process step, including ingot growth, wafer handling, ion implantation, wet-chemical cleaning, high-temperature anneals, or oxidation. To avoid yield losses, the silicon industry has to be very strict with respect to metal-contamination levels on the production line. For instance, for iron, the Semiconductor Industry Association (SIA) Roadmap presently specifies 2.5 ϗ 1010 cm−2 as the maximum tolerable surface concentration, decreasing to 5 ϗ 109 cm−2 by 2004.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3