The influence of water of hydrolysis on microstructural development in sol-gel derived LiNbO3 thin films

Author:

Joshi Vikram,Mecartney Martha L.

Abstract

The effect of water of hydrolysis on nucleation, crystallization, and microstructural development of sol-gel derived single phase LiNbO3 thin films has been studied using transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and differential scanning calorimetry (DSC). A precursor solution of double ethoxides of lithium and niobium in ethanol was used for the preparation of sol. DSC results indicated that adding water to the solution for hydrolysis of the double ethoxides lowered the crystallization temperature from 500 °C (no water) to 390 °C (2 moles water per mole ethoxide). The amount of water had no effect on the short-range order in amorphous LiNbO3 gels but rendered significant microstructural variations for the crystallized films. AFM studies indicated that surface roughness of dip-coated films increased with increasing water of hydrolysis. Films on glass, heat-treated for 1 h at 400 °C, were polycrystalline and randomly oriented. Those made with a low water-to-ethoxide ratio had smaller grains and smaller pores than films prepared from sols with higher water-to-ethoxide ratios. Annealing films with a low water concentration for longer times or at higher temperatures resulted in grain growth. Higher temperatures (600 °C) resulted in grain faceting along close-packed planes. Films deposited on c-cut sapphire made with a 1:1 ethoxide-to-water ratio and heat-treated at 400 °C were epitactic with the c-axis perpendicular to the film-substrate interface. Films with higher concentrations of water of hydrolysis on sapphire had a preferred orientation but were polycrystalline. It is postulated that a high amount of water increases the concentration of amorphous LiNbO3 building blocks in the sol through hydrolysis, which subsequently promotes crystallization during heat treatment.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3