Author:
Hsueh Cheng-Chen,Mecartney Martha L.
Abstract
A systematic investigation of the microstructural evolution of fast fired, sol-gel derived Pb(Zr, Ti)O3 films (Zr/Ti = 54/46) was performed by analytical transmission electron microscopy (TEM). It was found that the nucleation and growth of the sol-gel PZT films were influenced by the precursor chemistry. The precursor solution was composed of Pb 2-ethylhexanoate, Ti isopropoxide, and Zr n-propoxide in n-propanol. Porous and spherulitic perovskite grains nucleated and grew from a pyrochlore matrix for NH4OH-modified films, but no chemical segregation was found. These thin films consisted completely of porous spherulitic PZT grains (∼2 μm) when the firing temperature was increased. Chemical phase separation with regions of Zr-rich pyrochlore particles separated by Zr-deficient perovskite grains was observed in the initial stages of nucleation and growth for CH3COOH-modified PZT films. This phase separation is attributed to the effect of acetate ligands on the modification of molecular structure of the PZT precursor. Firing the acid-modified films at higher temperatures for long times resulted in porous perovskite grain structures. The residual porosity in these films is suggested to be a result of differential evaporation/condensation rates during the deposition process and the gas evolution at high temperatures due to trapped organics in the films. Dielectric and ferroelectric properties were correlated to the microstructure of the films. Lower dielectric constants (∼500) and higher coercive fields (∼65 kV/cm) were found for the acid-modified PZT films with phase separation in comparison to those measured from the sol-gel films with a uniform microstructure (∽ > 600, Ec < 50 kV/cm). All films fired at 650 °C showed relatively good remanent polarization on the order of 20 μC/cm2.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献