Stress development and relaxation in copper films during thermal cycling

Author:

Thouless M.D.,Gupta J.,Harper J.M.E.

Abstract

The reliability of integrated-circuit wiring depends strongly on the development and relaxation of stresses that promote void and hillock formation. In this paper an analysis based on existing models of creep is presented that predicts the stresses developed in thin blanket films of copper on Si wafers subjected to thermal cycling. The results are portrayed on deformation-mechanism maps that identify the dominant mechanisms expected to operate during thermal cycling. These predictions are compared with temperature-ramped and isothermal stress measurements for a 1 μm-thick sputtered Cu film in the temperature range 25–450 °C. The models successfully predict both the rate of stress relaxation when the film is held at a constant temperature and the stress-temperature hysteresis generated during thermal cycling. For 1 μm-thick Cu films cycled in the temperature range 25–450 °C, the deformation maps indicate that grain-boundary diffusion controls the stress relief at higher temperatures (>300 °C) when only a low stress can be sustained in the films, power-law creep is important at intermediate temperatures and determines the maximum compressive stress, and that if yield by dislocation glide (low-temperature plasticity) occurs, it will do so only at the lowest temperatures (<100 °C). This last mechanism did not appear to be operating in the film studied for this project.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moisture Uptake Relaxes Stress in Metal Halide Perovskites at the Expense of Stability;ACS Energy Letters;2024-07-30

2. Inelastic Deformation in Methylammonium Lead Iodide Perovskite and Mitigation by Additives during Thermal Cycling;ACS Energy Letters;2024-04-11

3. Influence of Annealing on Microstructure of Electroplated Copper Trenches in Back-End-Of-Line;2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM);2023-05

4. Study on Controlling Residual Stress in Thick Copper Film for Heat Sink Using Graphene;Korean Journal of Metals and Materials;2023-01-05

5. Simulation of Cu pad expansion in wafer-to-wafer Cu/SiCN hybrid bonding;Microelectronics Reliability;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3