Author:
Yang Zunde,Du Honghua,Libera Matthew,Singer Irwin L.
Abstract
α-SiC crystals were implanted with aluminum to a high dose at room temperature or 800 °C. Transmission electron microscopy showed that SiC was amorphized by room temperature implantation but remained crystalline after 800 °C implantation. Crystalline aluminum carbide was formed and aluminum redistribution took place in SiC implanted at 800 °C. Implanted and unimplanted crystals were oxidized in 1 atm flowing oxygen at 1300 °C. Amorphization led to accelerated oxidation of SiC. The oxidation resistance of SiC implanted at 800 °C was comparable with that of pure SiC. The oxidation layers formed on SiC implanted at both temperatures consisted of silica embedded with mullite precipitates. The phase formation during implantation and oxidation is consistent with thermodynamic predictions. The results from our current and earlier studies suggest that there exists an optimum range of implantation temperature, probably above 500 °C but below 800 °C, which preserves the substrate crystallinity and retains the high aluminum dosage, for the enhancement of oxidation resistance of SiC.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献