Mullite Formation in Al2O3/SiO2/SiC Composites for Processing Porous Radiant Burners

Author:

Pottmaier Daphiny,Rosario Jefferson J.,Fredel Marcio C.,Oliveira Amir A.M.,Alarcon Orestes E.

Abstract

ABSTRACTUse of porous ceramic burners for natural gas combustion is an optimum alternative to enhance energy efficiency and decrease emission of pollutant gases per generated power. Materials requirements for the operation of such porous burners are mainly thermal shock and chemical resistance and those can be reached with cellular ceramics. Mullite was theoretically identified among the best materials for this application; however, its potential was not properly explored yet. Even though mullite can be synthesized from different compounds and processing routes, control of final material characteristics is complicated mainly due to the formation of amorphous phase. In this work, using a technological approach mullite burners were processed by the replication method starting from different mixtures of Al2O3/SiO2/SiC. Rheological study of the slurries has given additives content for the coating of the polyurethane sponges. After varying sintering temperatures up to 1600 °C and isotherm times for 12 h, microstructural aspects and product phases of the final composites were characterized in order to understand the influence of Al2O3/SiO2/SiC ratios in the formation of mullite phase and amorphous content.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3