Defect Evolution from Low Energy, Amorphizing, Germanium Implants on Silicon

Author:

Gutierrez Andres F.,Jones Kevin S.,Downey Daniel F.

Abstract

ABSTRACTPlan-view transmission electron microscopy (PTEM) was used to characterize defect evolution upon annealing of low-to-medium energy, 5-30 keV, germanium implants into silicon. The implant dose was 1 × 1015 ions/cm2, sufficient for surface amorphization. Annealing of the samples was done at 750 °C in nitrogen ambient by both rapid thermal annealing (RTA) and conventional furnace, and the time was varied from 10 seconds to 360 minutes. Results indicate that as the energy drops from 30 keV to 5 keV, an alternate path of excess interstitials evolution may exist. For higher implant energies, the interstitials evolve from clusters to {311}'s to loops as has been previously reported. However, as the energy drops to 5 keV, the interstitials evolve from clusters to small, unstable dislocation loops which dissolve and disappear within a narrow time window, with no {311}'s forming. These results imply there is an alternate evolutionary pathway for {311} dissolution during transient enhanced diffusion (TED) for these ultra-low energy implants.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3