Buried Quantum Well Structure Fabricated by in Situ EB Lithography

Author:

Kawanishi H.,Sugimoto Y.,Ishikawa T.,Tanaka N.,Hidaka H.

Abstract

AbstractBuried quantum well structures have been fabricated in GaAs/AIGaAs system using an in situ lithography process. The process utilizes an ultrathin oxide layer formed in situ on a GaAs surface as a mask against Cl2 gas etching. An electron beam (EB)-induced Cl2 gas etching is used to locally remove the oxide mask for positive-type lithography. For negativetype lithography, the oxide mask is selectively formed on a GaAs surface by EB-stimulated oxidation. Subsequent Cl2 gas etching results in the formation of isolated quantum wells. After removing the oxide mask, overgrowth using molecular beam epitaxy is successfully carried out on the patterned surface. The cathodoluminescence image of the buried quantum well demonstrates the high quality of the resulting structure formed by this “in situ EB lithography” process. The photoluminescence intensity from the quantum well of the processed sample is proved to be the same order of magnitude compared with that from a successively grown sample, showing that the use of the oxide mask causes no serious degradation in the processed interface.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3