Abstract
ABSTRACTThe indentation hardness and yield strength of various wurtzite-structured semiconductors, such as AlN, GaN, InN, and ZnO, were summarized together with those of 6H-SiC. From analysis of the data, the activation energy for motion of an individual dislocation was deduced to be 2–2.7 and 0.7–1.2 eV in GaN and ZnO, respectively, and the evaluated activation energy for dislocation motion showed a dependence on the dislocation energy in the minimum length. The results were evaluated in terms of homology and the basic mechanism of the dislocation process. Dislocation motion is thought to be primarily controlled by the atomic bonding character of the semiconductors.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献