Author:
Florando Jeffrey N.,Nix William D.
Abstract
ABSTRACTRecently a new microbeam bending technique utilizing triangular beams was introduced. For this geometry, the film on top of the beam deforms uniformly when the beams are deflected, unlike the standard rectangular geometry in which the bending is concentrated at the support. The yielding behavior of the film can be modeled using average stress-strain equations to predict the stress-strain relation for the film while attached to its substrate. This model has also been used to show that the gradint of stress and strain through the thickness of the film, which occurs during beam bending, does not obscure the measurement of the yield stress in our analysis.Utilizing this technique, the yielding and strain hardening behavior of bare Cu thin films has been investigated. The Cu film was thermally cycled from room temperature to 500 °C, and from room temperature to –196°C. The film was tested after each cycle. The thermal cycles were performed to examine the effect of thermal processing on the stress-strain behavior of the film.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献