Controlling the Microstructure and Magnetic Properties of Ferromagnetic Nanocrystals Produced by Ion Implantation

Author:

Beaty K.S.,Meldrum A.,Franck J.P.,Sorge K.,Thompson J. R.,White C.W.,Zuhr R.A.,Boatner L.A.,Honda S.

Abstract

ABSTRACTIon implantation coupled with annealing is a versatile and flexible approach to creating ferromagnetic near-surface nanocomposites that represent a wide range of particle/host combinations. We have used ion implantation and thermal processing to create a layer of Co nanoparticles in a sapphire host that was subsequently irradiated with Xe, Pt, or Pb in order to systematically modify the magnetic properties of the composite. Transmission electron microscopy (reported in an accompanying paper in this volume) was used to carry out a detailed characterization of the microstructure of the resulting near-surface composites whose magnetic properties were determined using SQUID magnetometry or magnetic circular dichroism. These composites exhibit magnetic hysteresis with coercivities ranging from near zero (i.e., superparamagnetism) up to 1.2 kG - depending on the composition and microstructure. We also present the results of preliminary experiments in which we attempt to control the spatial distribution of magnetic elements within ion-implanted ferromagnetic nanocomposites. The results demonstrate methods for tailoring the magnetic properties of nanocomposites produced by ion implantation for specific applications.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3