Ion-Implantation/Annealing-Induced Precipitation of Nanophase Ferromagnetic Particles In Yttrium-Stabilized ZrO2

Author:

Honda S.,Modine F.A.,Meldrum A.,Budai J.D.,Haynes T.E.,Boatner L.A.,Gea L.A.

Abstract

AbstractIon implantation and thermal processing techniques have been used to form embedded ferromagnetic nanophase precipitates and thereby create magneto-optically active near-surface regions on otherwise inactive materials. Ferromagnetic precipitates were formed by first implanting Fe+ or Ni into Y0.15Zr0.85O1.93(YSZ) with an implant energy of 140 keV, a fluence of 8.0 × 1016 ions/cm2, and at a temperature of-189°C. After implantation, the specimens were annealed at temperatures ranging from 500 to 1100°C in several types of reducing atmospheres. X-ray diffraction and TEM analysis of the Fe- or Ni-implanted/annealed specimens revealed that crystallographically coherent precipitates of metallic α-Fe, magnetite (Fe3O4), or Ni could be formed in YSZ depending on the annealing conditions. In particular, the cooling rate was established as the critical factor that determined whether Fe or Fe3O4 precipitates were created. Magneto-optical effects arising from ferromagnetic precipitates of Fe, Fe3O4, and Ni in the near-surface region of YSZ were observed and characterized using magnetic circular dichroism (MCD). The magneto-optical response of the α-Fe, Fe3O4, and Ni precipitates was markedly different as indicated by the MCD-detected hysteresis curves. The precipitation mechanism, the chemical nature of the precipitates, and the particle-size distributions resulting from different annealing conditions were investigated and correlated with the precipitate magneto-optical properties.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3