Identification and Sources of Impurities in InGaAs Grown by Liquid Phase Epitaxy

Author:

Knight D. G.,Miner C. J.,Majeed A.

Abstract

ABSTRACTHigh purity In.53 Ga.47 As and InP with carrier concentrations [ND–NA] < 5×1015 cm−3 has been grown by the LPE technique on both n-type and semi-insulating substrates to detect and identify trace donor and acceptor impurities. Acceptor impurities have been detected in low temperature photoluminescence spectra where LPE melt baking and growth programs indicate a melt origin for two of these species, one of which is zinc. Data from semiconductor profiles provides evidence for sulfur and tin donor impurities, which comes from the rinse melt used to etch back substrates doped with the respective contaminants. Silicon and sulfur contaminants have been detected by SIMS measurements; and may arise not only from the indium and III-V materials, but also the graphite boat used to grow the epilayers. Volatile sulfur-containing compounds have been detected during high temperature bake-out of high purity graphite boats.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3